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Abstract
The dynamics of magnetic relaxation in a system of isolated ferrimagnetic
nanoparticles depends on the ratio between the magnetic relaxation time (τ )
and the measurement time (tm), which is usually considered to be equal to the
period (TH) of the external alternating magnetic field (tm = TH). When tm
approaches τ (τ < tm), the magnetic moments cannot relax completely, thus
leading to a deviation from the superparamagnetic behaviour (SPM), and a
magnetic remanence of the system when the deviation is large. An external
magnetic field (H ) can significantly change the dynamics of the relaxation,
especially when its amplitude (Hm) is high. This paper shows that there is
a limit field (threshold field (Hp)) that depends on the anisotropy field of the
nanoparticle, its magnetic volume and on the temperature; beyond this field, the
magnetic moments cannot pass the potential barrier and they remain blocked. It
will be shown that under these conditions the measurement time can no longer be
considered to be tm = TH, but is a measurement time tmH < TH that in addition
to TH will also depend on Hp and Hm. When the amplitude of the alternating
magnetic field is lower than the value of the threshold field (Hm < Hp), the
measurement time is reduced to the period of the magnetic field. The theory
proposed for a system of aligned nanoparticles has been verified experimentally
in the case of a ferrofluid-type system. The result obtained brings in important
corrections for determining the magnetic volume of the nanoparticles or the
magnetic anisotropy constant if the condition tm = tmH < TH is used when Hm

is high (Hm > Hp), instead of tm = TH.

1. Introduction

Multifunctional magnetic nanoparticles are gaining more interest in theoretical and
experimental studies [1–3] as a result of their potential applications, such as in ultrahigh density

0953-8984/05/122019+16$30.00 © 2005 IOP Publishing Ltd Printed in the UK 2019

http://dx.doi.org/10.1088/0953-8984/17/12/023
http://stacks.iop.org/JPhysCM/17/2019


2020 C Caizer

recording media and biomedicine [4–7], since they can easily be manipulated and controlled
with an external magnetic field. Applications regarding information storage and recording
media are primarily based on the high values of the coercivity of a single-domain nanoparticle
at an alternating magnetization along the direction of which its magnetic moment is oriented
when the magnetization is thermally stable. However, the stability at a given temperature will
also depend on the value of the energy barrier for the magnetic moments (Wb), which, in its
turn, in the absence of other external factors will depend on the nanoparticle’s volume for a
certain material. Thus, depending on the nanoparticle’s volume there will be a lower limit of
the magnetization stability corresponding to a critical volume [8]; below the critical volume
there will be fluctuations of the nanoparticle’s magnetization under the effect of the thermal
activation.

In practical applications, an external magnetic field is applied to the nanoparticle system
in most cases. Under these conditions the energy barrier changes under the effect of the
external magnetic field; hence it is important to know its effect on the magnetic relaxation.
Below the critical volume, after applying an external magnetic field for saturation, the magnetic
moments will rotate in the direction and in the sense of the applied field, resulting in a saturation
magnetization. After removing the field, n/2 magnetic moments out of the total n will invert
during the relaxation time [9, 10]

τN = τ0 exp

(
Wb

kBT

)
, (1)

and the system’s magnetization Mr(t) = Msat(0) · e−t/τN decreases during the time τN to
the value e−1 (∼37%) of the saturation value Msat(0) (at the initial moment t = 0). The
barrier energy (Wb) in this case (in the absence of the external magnetic field) is given only
by the magnetic anisotropy energy, Wb = KaVm, Ka being an effective anisotropy constant
and Vm the magnetic volume of the nanoparticle. Other values in equation (1) are: T the
temperature, kB Boltzmann’s constant and τ0 a time constant which is usually 10−9 s. In usual
ferrofluids, the main relaxation mechanisms of magnetization are either of Néel type (relaxation
of magnetization by the rotation of the magnetic moment in relation to the crystallographic
axes) or of Brown (Debye) type (relaxation of magnetization by the rotation of the magnetic
moment together with the particle itself). In the presence of thermal agitation (T > 0) and in
the absence of the external magnetic field, or when the field is present but the condition ξ � 1
is met (ξ = µ0mp H/kBT , where ξ is the ratio between the energy of the magnetic moment
for particle mp in the field H and the thermal energy kBT (µ0 = 4π × 10−7 H m−1)), the
relaxation times corresponding to the two processes can be described by the equations

τN = τ0 exp(KaVm/kBT ), (2)

where τN is the Néel relaxation time [9], and

τB = 3ηV/kBT, (3)

where τB is the Brown relaxation time [10]. In equation (3), η is the viscosity of the carrier
liquid and V is the hydrodynamic volume. Normally, for most ferrofluids, at room temperature
τN � τB. However, depending mainly on the particle’s anisotropy and volume, but also on
the values of η and T , there can be cases when the two relaxation times become comparable.
In this case, the relaxation time (τ ) of magnetization is well described by the equation [11]

τ = τNτB/(τN + τB). (4)

Moreover, in the case of strong fields (ξ � 1), the relaxation time of the particle orientation
(τn) depends on the ratio between the external field H and the field of the particle’s magnetic
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anisotropy HK (HK = 2Ka/µ0 Ms, Ms is the spontaneous magnetization) [12]; this means that
for H/HK � 1, τn is defined by the equation

τn = 6ηV/(µ0Ms H Vm) (5)

and for H/HK � 1,

τ ′
n = 3ηV/(KaVm). (6)

In the presence of the external magnetic field H , the barrier energy of the nanoparticle will
change (either increase or decrease),

Wb = Wmax − (±Wmin), (7)

depending on the orientation of the field, in the sense of the nanoparticle’s magnetic moment or
in the opposite sense. In equation (7), Wmax is the maximum energy and Wmin is the minimum
energy of the nanoparticle in the field. At the same time, the barrier energy depends on the
orientation of the easy magnetization axes of the nanoparticles, regardless of whether these
are aligned or not (in the direction of the magnetic field or in any other direction), which will
have a direct influence on the magnetic relaxation.

Under dynamic conditions, the stability of magnetic moments can be analysed as
depending on the ratio between the measurement time (tm; the time during which the magnetic
relaxation process is being observed) and the magnetic relaxation time τ . Statically, the
measurement time is 10–102 s. Dynamically, however, it will depend on the period (TH) of the
magnetizing field and usually it is assumed to be [13, 14]

tm = TH. (8)

This equation only applies in the presence of thermal agitation and only for very low amplitudes
of the external magnetic field (generally of the order of Oe) [14, 15]. When the amplitude of
the field is no longer small, equation (8) does not apply any longer. Under these conditions,
the equation must be corrected. This aspect can already be observed very well from the
experimental results, when the variation of the initial magnetic susceptibility in relation
to temperature is recorded for a nanoparticle system [16]; if the magnetic field where the
susceptibility was recorded is low (a few Oe) and in the absence of other external factors
and interactions, a maximum susceptibility is obtained at the blocking temperature (when the
measurement time becomes equal to the mean relaxation time (tm = τ )) [14, 15]. When the
magnetic field is higher (tens of Oe or even more), the maximum susceptibility no longer
corresponds to the previous position (on the temperature scale) and it is shifted for other values
of the temperature [16–18]; the extent of shifting depends on the value of the magnetic field.
As a result, when equation (8) is used in this case there will be significant errors, for instance
when the magnetic anisotropy constant (Ka) or the volume of nanoparticles (〈Vm〉) is being
determined,

Ka〈Vm〉 = 〈Tb〉 · kB ln

(
TH

τ0

)
, (9)

from the blocking temperature 〈Tb〉 (considered as being the temperature that corresponds to
the maximum of magnetic susceptibility; 〈 〉 is the mean value) determined experimentally, a
case that often arises in practice.

In this paper we will present a study on the influence of the high external alternating
(harmonic) magnetic field on the magnetic relaxation under dynamic conditions in the case of
a system of aligned nanoparticles. In this case we will deduce the mathematical expression for
the measurement time (tmH) and we will show that, at a given period of the magnetic field, it
depends both on the amplitude of the external magnetic field and on a threshold field, specific
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Figure 1. Orientation of the vectors �Ms and �H in relation to the easy magnetization axis (−z, +z);
ϕ is the angle between the direction of the magnetization and that of the magnetic field.

to the nanoparticle type (depending on the nature of the nanoparticle, at a given temperature
and volume). The theoretical results obtained will then be compared to the experimental data
and, based on that, the recorded remanence is explained at the temperature of liquid nitrogen
for a system of aligned nanoparticles dispersed in a carrier liquid (ferrofluid), a system that
has a superparamagnetic behaviour at room temperature.

2. Theory

In the absence of thermal agitation (T = 0), the relaxation time according to equation (1)
becomes infinite. The energy of a nanoparticle fixed in space, with the magnetic moment
�mp = Vm �Ms in the field �H , the direction of which is the same as that of the easy magnetization
axes of the nanoparticle (figure 1), is [19]

W (H, ϕ) = KaVm sin2 ϕ − µ0 H MsVm cos ϕ, (10)

whereby ϕ is the angle between the direction of the spontaneous magnetization and that of
the easy magnetization axis (the magnetic field is in this direction). In equation (10), the first
member is the anisotropy energy (considered as being uniaxial), and the second member is the
magnetic moment energy in the field H . From the extreme condition of the energy

(dW (H, ϕ)/dϕ)|H = 0, (11)

it results that

(2Ka cos ϕ + µ0 H Ms) · sin ϕ = 0. (12)

The condition sin ϕ = 0 leads to a minimum of the nanoparticle’s energy, namely

Wmin = −µ0 H MsVm (13)

for ϕ = 0 ( �Ms and �H have the same direction and the same sense) and

W ′
min = +µ0 H MsVm (14)

when ϕ = π ( �Ms and �H have the same direction,but opposite senses). The maximum condition
for the energy results from the equation

2Ka cos ϕ + µ0 H Ms = 0, (15)

which leads to

cos ϕ = −µ0 Ms H

2Ka
. (16)
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If, we replace cos ϕ in equation (10), we obtain the maximum value of the nanoparticle’s
energy in the presence of the field H :

Wmax = π Kad3
m

6

[
1 +

(
µ0 Ms H

2Ka

)2]
. (17)

In equation (17) we have used Vm = πd3
m/6 (in the approximation of spherical particles),where

dm is the magnetic diameter of the nanoparticle. When the field H increases, according to
equation (7), the height of the energy barrier Wb = Wmax −Wmin increases (Wmax +µ0 H MsVm)
for nanoparticles that have their magnetic moments oriented in the sense of the applied magnetic
field. For the nanoparticles that have their magnetic moments oriented in the opposite sense
to the external magnetic field, the energy barrier will decrease (Wmax − µ0 H MsVm).

When the magnetic field H decreases after it has reached the saturation value, as long as
the height of the energy barrier remains considerable for the magnetic moments, these will
not be able to pass the energy barrier and they will retain their orientation (in the sense of the
magnetic field). Still, the magnetic moments will only be able to pass the energy barrier when
the external field decreases below a certain value, and we will call this field a ‘threshold’ field
(Hp). We will deduce the mathematical expression for the threshold field in the following.

In the presence of thermal agitation, the probability [20]

P = P0 exp

(
− Wmax − Wmin

kBT

)
(18)

that the magnetic moment of the nanoparticle will pass the energy barrier in the presence of
the field H is

P = P0 exp

[
−π Kad3

m

6kBT

(
1 +

µ0 Ms H

2Ka

)2]
(19)

where P0 is a factor that varies slightly with the field [21]. In equation (18) we have replaced
Wmax given by equation (17) and Wmin given by equation (13). In this case, the behaviour of
the relaxation will be determined by the exponential function (Pexp; figure 2(a)). Thus, the
height of the energy barrier

Wb = KaVm + µ0 MsVm H +
µ2

0 M2
s Vm

4Ka
H 2, (20)

is higher than KaVm and its value depends strongly on the value of H .
In the case when the magnetic field has a sinusoidal variation and a high amplitude (the

amplitude of the magnetic field (Hm) is higher than the value of the threshold field (Hp;
Hm > Hp))—a case often seen in practice—the inversion of magnetic moments can only
occur during a short period of time (�t), in the proximity of the moment when the field
will pass the zero value (figure 2(b)). In this case, this time period can be considered to be
the measurement time (tmH; period of time during which the magnetic relaxation occurs) of
remanence (�t ≡ tmH). Figure 2(a) also shows the variation of the magnetic field during
a half-period (TH/2). Since the probability is an exponential function, the time tmH can be
determined from the practical condition for the decrease of probability (after tmH) at a value
of 1/e (e—base of the natural logarithm) from the maximum value (PM; figure 2(a)). Hence,
imposing the condition

P = PM/e, (21)

where, in agreement with equation (19),

PM = P0 exp

(
−π Kad3

m

6kBT

)
(22)
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Figure 2. (a) Dependence
of the exponential function
Pexp on the external magnetic
field (during a half-period).
(b) Variation over time of
the external magnetic field;
the diagram also shows the
level of the threshold field
(Hp) under which the thermal
relaxation of magnetization
occurs.

is the maximum probability (obtained in the absence of the field), the threshold field is obtained:

Hp = 2Ka

µ0 Ms

[(
1 +

6kBT

π Kad3
m

)1/2

− 1

]
, (23)

below which the magnetic moments can relax. Equation (23) can also be written in a restrained
form:

Hp = HK

[(
1 +

kBT

KaVm

)1/2

− 1

]
. (24)

The equation makes it possible to determine the value of the external magnetic field below
which the effect of the field on the thermal relaxation of the magnetization can be ignored.
The value of the threshold field depends, as expected, not only on the anisotropy, but also on
the magnetic volume of the nanoparticles and on their temperature, as well as on the relation
between the thermal energy (kBT ) and the anisotropy energy (KaVm).
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Figure 3. The system for cooling the sample (S), together with the magnetization coil (LH). LS
is the probe coil in which voltage is induced that is proportional to the magnetization (M) of the
sample after the application of the magnetizing field (H ); (· · · · · ·): the direction of applying the
field H is the same as the easy magnetization axis direction (−z, +z) (see figure 1) of the system.

However, when the magnetic field varies according to a sinusoidal law in the time tmH the
field will reach the value (figure 2(b))

Hp = Hm sin(ω · tmH) (25)

where ω = 2π/TH, TH is the period of the alternating magnetic field and Hm is the maximum
value of the magnetic field. From the last equation, I obtain the time

tmH = TH

2π
arcsin

(
Hp

Hm

)
< tm, (26)

during which the magnetic moments can relax (they can pass the energy barrier) in the presence
of the magnetic field.

According to what is given above, in the presence of the sinusoidal magnetic field H
with a high amplitude (Hm > Hp), that is applied along the easy magnetization axis, the
measurement time can no longer be considered as being the period TH of the alternating field
(tm = TH (equation (8))), but is the time tmH defined by equation (26) where Hp is given by
equations (23), (24).

When the external magnetic field is applied in the opposite sense (ϕ = π), the roles of the
magnetic moments will change. Thus, for magnetic moments oriented in the sense opposed to
the magnetic field, the energy barrier will decrease, and for those oriented in the same sense
as the field, it will increase. When the magnetic field decreases from the value corresponding
to saturation to zero, the results obtained above still apply.

3. Experimental details

The theory presented in section 2 was verified for a ferrofluid-type sample [22] made up
of magnetite nanoparticles that were quite spherical, isolated (surfacted with oleic acid) and
dispersed in kerosene. The colloidal particles were obtained by the chemical co-precipitation
method. Finally, the ferrofluid was filtered in a magnetic field gradient, thus providing a
good stability over time. The alignment of the nanoparticles (and together with them their
easy magnetization axes) in the direction where the alternating magnetization field was to
be applied has been obtained by placing the sample at room temperature in a continuous
magnetic field (150 kA m−1) that saturated the sample (figure 3) and then by cooling it down
to the temperature of liquid nitrogen. Thus, apart from the alignment of the nanoparticles,
their fixing in space was also obtained by freezing the carrier fluid. After removing the
continuous magnetic field, the sample was magnetized at a temperature of 77 K in an alternating
(sinusoidal) field (H ) with an amplitude Hm = 105 A m−1. The magnetization curve that was
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Figure 4. Magnetization curves of the sample recorded at the temperature of liquid nitrogen (•)
and at room temperature (◦); (——): Langevin curve. Inset: magnified image around the origin
for the curve (•).

recorded is shown in figure 4, curve (•). The diagram also shows the curve recorded when
the nanoparticle system has returned to room temperature (curve (◦)); this corresponds to a
Langevin-type curve [23] (continuous curve (——)), which shows that at a temperature of
298 K the behaviour of the nanoparticle system is superparamagnetic (SPM). The magnetic
packing volume fraction of the sample is εm = Msat/Ms = 0.024, where the saturation
magnetization Msat = 11.46 × 103 A m−1 was determined by fitting the experimental curve
(curve (◦)) with the Langevin function (curve (——)) for an infinite field, and the spontaneous
magnetization is Ms = 477.5 × 103 A m−1 [24]. The relatively low value of εm means
that the distance between the nanoparticles in the ferrofluid is quite high, and the dipolar
interactions can be neglected. Moreover, the dipole–dipole coupling parameter [25], given by
the ratio between the maximum energy of interaction between the magnetic moments of two
nanoparticles approximated as being spherical and the thermal energy kBT ,

λ = (µ0π M2
s /144kBT )(〈dm〉2/〈dh〉)3, (27)

has a value of 0.53. In equation (27), 〈dm〉 = 10.86 nm [22] is the mean magnetic diameter
of the nanoparticles and 〈dh〉 = 〈d〉 + 2〈δ〉 is the hydrodynamic diameter (〈d〉 = 12.7 nm [22]
is the physical diameter and 〈δ〉 ∼ 2 nm is the average length of the chain in the oleic acid
(surfactant) molecule). Previous studies have shown that thermodynamically stable particle
clusters are formed for λ > 1, but closer to the values 2–4.5 [26–28]. Since in the case of our
ferrofluid λ = 0.53 < 1, it results that thermal agitation successfully opposes the formation
of particle clusters.

In the presence of the external magnetic field, even if the Langevin parameter (dipole–field
interaction parameter),

ξ = µ0π Ms〈dm〉3 H/6kBT, (28)
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reaches values >5 when the field increases towards its saturation value, the conditions for the
formation of thermodynamically stable chains λ � 1 and λ � ξ (according to the statistic
model suggested by Zubarev [29]), are not met, since parameter λ in our case is relatively low.
Additionally, in [30] it was shown that at εm = 0.01, for λ < 4 and ξ � 5, no particle chains
are formed; only for λ ∼ 6–8 is their formation influenced positively by an increase of the
field. This means that even if particle clusters are formed at strong fields, they are not stable
aggregates and they only have a short lifetime.

At a temperature of 77 K, since the nanoparticles are fixed in the solid matrix, the formation
of clusters under the effect of the external magnetic field is out of the question. In conclusion,
in the case of our ferrofluid it is reasonable to consider neglecting interactions that lead to the
formation of clusters that are thermodynamically stable. At the temperature of liquid nitrogen
there is a very large deviation of the experimental curve (•) (Mr = 3.6 × 103 A m−1 (Mr—
remanent magnetization)) and Hc = 2.6 × 103 A m−1 (Hc—coercive field; see the inset) from
the Langevin curve (Mr = 0, Hc = 0), a deviation that is reflected in the existence of the
remanence r = 0.21. The value of the experimental remanence suggests an approach of the
magnetic relaxation time to the measurement time, since the process is dynamic (the frequency
of the alternating field is of 50 Hz). The observed remanence will be explained below and
the theoretical results presented in the previous section will be compared to those obtained
experimentally.

4. Discussion

Figure 5(a) shows the variation of the nanoparticle’s energy as a function of angle ϕ

and field H , calculated for a temperature of 77 K. For the representation I have used:
〈dm〉 = 12.35 nm (value previously determined in [22]) and the effective anisotropy
constant Ka = 12.2 × 103 J m−3 [31], where both values were determined at the same
temperature (77 K). The effective anisotropy constant was determined with the equation
Ka = 6kBT ln(τexp/τ0)/π〈dm〉3, where τexp = 86 µs [31] is the relaxation time measured
experimentally at a temperature of 77 K for the nanoparticle system with the anisotropy axes
aligned in the direction of the field H . From the diagrams (a1), (a2), (a3) (figure 5(a)) it
can be observed that the energy barrier increases with increase of the magnetic field and
the maximum of the barrier shifts toward values of the ϕ angle that are higher than 90◦.
Figure 5(b) is a representation of the energy variation for the values of the magnetic fields 0,
30 and 100 kA m−1. When the magnetic field decreases from the saturation value (100 kA m−1;
diagram (b3)) to 0 (diagram (b1)), the barrier energy for the magnetic moments (oriented in the
sense of the field) will decrease gradually and the probability of the magnetic moments passing
the energy barrier will increase (figure 6). As has been shown in the previous section, when
field H decreases and reaches the threshold value Hp, the barrier energy will have a value that
will allow some (since in the real system there is a distribution of the nanoparticle diameters)
magnetic moments to pass the energy barrier. But during the time tmH, when the field reaches
the threshold value and then decreases to 0, the thermal agitation does not have sufficient time to
invert all magnetic moments of the n/2 particles. Thus, even at H = 0, there will be a surplus

�n = n − 2n0 (29)

of magnetic moments oriented in the initial sense of the field, which will imply a remanent
magnetization (figure 4, curve (•)). In equation (29) n0 is the number of magnetic moments
(from the volume unit) that were inverted by 180◦ along the easy magnetization axis (fig-
ure 5(b1)). The concentration percentage of these can be determined, having in view the value
of the experimental remanence, r = Mr/Msat = 0.21, which can also be expressed by the
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(a) (b)

Figure 5. (a) Variation of the nanoparticle’s energy (expressed in eV) as a function of the angle
ϕ and the field H , for H = 1 A m−1 (a1) and when H increases: from 1 to the maximum value
Hm, i.e. 30 × 103 A m−1 (a2), and 100 × 103 A m−1 (a3), respectively. (b) Modification of the
barrier energy (Wb) and of the magnetic moment population (n) for the maximum values of the
field, namely 0 A m−1 (b1), 30 × 103 A m−1 (b2) and 100 × 103 A m−1 (b3).

following equation:

r = n − 2n0

n
= �n

n
. (30)

Here we had in view that the saturation magnetization Msat and the remanent magnetization
Mr can be represented by the equations

Msat
∼= nmp, Mr

∼= (n − 2n0)mp. (31)
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(a)

(b)

Figure 6. (a) Experimental
Pexp as a function of the field
H ; (b) variation of H over
time (Hm = 30 ×103 A m−1,
t = TH/2 = 10 ms).

Thus, in agreement with equation (30) it results that only 39.5% of the n magnetic moments
(figure 5(b3)) were inverted by 180◦, and the rest (n − n0; figure 5(b1)) of the 60.5% have
retained their orientation. The remanence (figure 4(•)) will be determined in this case by the
difference of 21% that represents the magnetic moments that have not been compensated.

If we perform a quantitative analysis of the relaxation processes for magnetization, we can
say that at the temperature of liquid nitrogen—since the ferrofluid is frozen—the Brownian
rotary diffusion is stopped (the nanoparticles are fixed in space), and τB → ∞. Under these
conditions, according to equation (4), it results that τ = τN and the relaxation of magnetization
only occurs through the Néel process. If we now replace the known values for our case, in
equation (23), we obtain Hp = 1.76 × 103 A m−1 and then from equation (26) it results
that tmH = 56 µs. The value obtained for tmH is comparable to that of the Néel relaxation
time τexp (86 µs) determined experimentally. Moreover, if we consider the limit for Hp to be
∼4×103 A m−1, as can be seen in figure 6 (when all magnetic moments can actually no longer
relax, the probability being practically zero), we obtain tmH ∼ 127 µs, a value higher than
the relaxation time, but quite close to it. In this way, the result obtained for the measurement
time using equation (26), where Hp is determined by equation (23), is in good agreement with
the experimental result. Since the measurement time is quite close to the relaxation time, this
will explain the large remanence (0.21) recorded experimentally (figure 4, curve (•)). The
value of the remanence is also (slightly) influenced by the existence of the distribution of the
nanoparticle diameters in the real system. The facts shown above apply for H = 0 or in a weak
field, when equation (2) can still be used. In intense fields, according to equations (1), (4)
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and (20), respectively, the relaxation time can be written as

τ = τN = τ0 exp

[
π Kad3

m

6kBT

(
1 +

µ0 Ms H

2Ka

)2]
, (32)

and it will increase rapidly with H , which will lead to the condition τN � tmH being met.
For example, by calculating the relaxation time for a field equal to the threshold field limit
(∼4 kA m−1), we obtain τN ∼ 850 µs. The value obtained (much higher than the measurement
time) shows that the magnetic moments are blocked,a result in agreement with the experimental
one.

If we were, however, to consider that the measurement time is tm = TH = 20 ms
(TH = 1/ν, ν = 50 Hz), then for H = 0 we would obtain τN (86 µs) � tm (τN is ∼2.3 × 102

times smaller than tm), and the remanence, under these conditions, would tend to zero, a result
in contradiction with the one obtained experimentally (see figure 4, curve (•)).

On the other hand, if we use tmH given by equation (26) (where Hp is given by equation (23))
and equation (9) (where TH = 1/ν), we obtain the blocking temperature

〈TB〉 = π Ka〈dm〉3

{
6kB ln

[
1

2πντ0
arcsin

(
Hp

Hm

)]}−1

. (33)

If we assume Ka ∼ 12.2 × 103 J m−3 and 〈dm〉 ∼ 12.3 nm (in the proximity of the
temperature of liquid nitrogen these values change slightly), for Hm of 50 kA m−1 it results
that: 〈TB〉50 ∼ 74 K at 50 Hz, and 〈TB〉640 ∼ 95 K at 640 Hz. These values are in good
agreement with the values obtained experimentally, corresponding to the peaks of the curves
M(T ) obtained in the ac measuring field Hm, for the same frequencies (see figure 7(a)). In
addition, if we calculate the blocking temperature (equation (33)) for several frequencies in
the range of 20–680 Hz, we obtain the curve in figure 7(b), which shows that there is a shift
of TB towards higher temperatures with the increase of frequency. This result is confirmed
experimentally by a shifting of the peaks of the curves in figure 7(a) when the frequency
increases. In conclusion, the results obtained confirm the validity of the formulae established
for the threshold field Hp (equation (23)) and the measurement time in the presence of the high
field tmH (equation (26)).

An additional confirmation can be considered: the calculation made at a temperature
of 298 K, at which the magnetic behaviour of the aligned nanoparticle system is similar
to that shown in figure 4, curve (◦) (superparamagnetic). Thus, admitting an anisotropy
constant of ∼4 × 104 J m−3 (obtained by extrapolation) [31], the threshold field ∼10 kA m−1

is obtained, corresponding to a magnetic diameter of 10.86 nm [22]. In this case it results
that t ′

mH ∼ 320 µs. At room temperature, where the ferrofluid goes over into the liquid
state, both relaxation processes that are coupled can contribute to the relaxation of the
magnetization. In low fields, when ξ � 1—a condition well met for H � 1 kA m−1—
the equations (2) and (3) can be used for calculating the relaxation times. In this way, if
we replace the known values, it results that τN = 0.66 µs and τB = 13.3 µs. In the
calculation we have used η = 7543 × 10−6 kg m−1 s−1 [32] and V = πd3

h/6. Since the
condition τN (0.66 µs) � τB (13.3 µs) � t ′

mH (320 µs) is met, in this case the relaxation of
magnetization will only occur through Néel processes and the relaxation time—according to
equation (4)—is τ ∼= τN = 0.66 µs. In intense fields, we also have to consider the value of
the anisotropy field [12], which in this case is HK = 133.4 × 103 A m−1. For fields that are
appreciably lower than HK, but are still intense (e.g. 40 kA m−1), for the calculation of the
relaxation time of the particle orientation we can use equation (5) to obtain an approximate
value, and for the Néel relaxation time we can use equation (32) (in the field considered, the
nanoparticles are quite well oriented (see figure 4, curve (◦))). If we make a calculation,
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Figure 7. (a) Magnetization
versus temperature recorded
at a frequency of 50 Hz
(•) (——, fit function) and
640 Hz (�), respectively.
(b) Variation of the blocking
temperature with frequency.

we obtain τn ∼ 6.8 µs and τN
∼= 61 µs. According to this result—since in this case the

condition τn (6.8 µs) � τN (61 µs) � t ′
mH (320 µs) is met—we can state that in intense

fields, the relaxation of magnetization occurs exclusively by an orientation of the particles and
the corresponding relaxation time is τ ∼= τn = 6.8 µs. In the area of transition from high
fields to low fields, both processes will contribute to the relaxation of magnetization and the
relaxation time can be determined with equation (4): of the order of 10−6 s. From the facts
discussed it must be observed that at a temperature of 298 K, the condition of the relaxation
time (τn for strong fields, τ in the transition area or τN for low fields) being much lower than
the measuring time t ′

mH (320 µs) is always met. This result is in good agreement with the
experimental curve (figure 4, curve (◦)), which shows that the magnetic moments follow
almost instantly the variation of the external magnetic field (the experimental curve follows a
Langevin-type function).

In conclusion, the theoretical results obtained are validated by the experimental data,
which explains the observed magnetic behaviour, both at a temperature of 77 K and at 298 K.

Recently, Fannin et al [33] have shown that an external (polarization) magnetic field also
influences the frequency dependence (in the range 100 MHz–6 GHz) of the components of the
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Figure 8. 3D (spatial) variation
of the threshold field as a function
of the magnetic diameter and the
nanoparticle temperature.

complex magnetic susceptibility χ ′ and χ ′′ (χ ′ is the real part and χ ′′ is the imaginary part of
the susceptibility) of a concentrated ferrofluid, with magnetite particles dispersed in kerosene,
with a magnetic diameter of 8.5 nm and a concentration of 30 × 1016 cm−3. The authors have
shown that as the external magnetic field increases from 0 to 1.3 kOe (∼100 kA m−1), the
frequency corresponding to the maximum of component χ ′′ ( fmax) and the one corresponding
to resonance ( fres; the frequency when component χ ′ passes through zero) shift towards higher
values; at the same time, the two frequencies ( fmax and fres), which are different at low fields
( fmax < fres), get closer to each other as the field increases, until they coincide ( fmax/ fres = 1)
at high fields (∼100 kA m−1).

Next, we will show that the equations found for Hp (equation (23)) and tmH (equation (26))
correspond to physical reality. For this purpose, we have calculated the field Hp at various
temperatures (figure 8), considering a temperature range of 0–300 K; at the same time, we
have considered other values of the magnetic diameter, both lower and higher than 〈dm〉
(5 < 〈dm〉 < 14 nm; values seen more often in practice). When T → 0 K, the field Hp → 0,
which implies that the magnetic moments can no longer relax, not even in the case of very small
nanoparticles. The same result is obtained when Hm → ∞. At high temperatures, however,
the values of Hp become considerable (figure 8), especially in the case of small nanoparticles
(e.g. Hp = 60 kA m−1, at a temperature of 300 K and a diameter of 5 nm). In this case, tmH will
increase very much, reaching for example ∼2 ms at a diameter of 5 nm (at Hm = 100 kA m−1

and TH = 20 ms). Naturally, the value of tmH will also depend on the amplitude of the external
magnetic field (Hm) and its frequency. Figure 9 shows the variation of tmH as a function of Hm

for Hp = 1.76 kA m−1 and TH = 20 ms. Equation (26) applies as long as the condition that
Hm is higher (or much higher) than Hp is met. (i) When Hm → ∞, the time tmH → 0. (ii) At
the limit, when Hm = Hp, from equation (26) it results that

(tmH)l = π/2ω = TH/4 (34)

i.e., the measurement time in this case can be considered the time range that equals a quarter
(5 ms) of the period of the alternating magnetic field (see the inset of figure 9). (iii) Still, when
Hm becomes lower than Hp, equation (26) becomes impossible since the sine function cannot
have values higher than 1. Physically, it must be understood that in this situation we can no
longer speak of a time range when the magnetic moments can relax, but they can relax during
the whole period TH of the alternating field. As a result, at low amplitude of the magnetization
field (in our case for Hm < Hp = 1.76 kA m−1 (or Hm < 22.1 Oe in the CGS units system)),



Relaxation of magnetization in systems of aligned nanoparticles 2033

Figure 9. Dependence
of the measurement time
on the applied field. In-
set: representation on an
enlarged scale around the
threshold field Hp.

the magnetic moments can relax under the effect of thermal activation for the whole period of
the alternating field. Hence, in this case we can consider the measurement time as being the
period TH (tmH = TH = tm). This result is in agreement with the one already known [14, 15],
when in magnetic fields with low amplitudes the measurement time is considered to be tm = TH

(equation (8)).
In conclusion, as has already been shown above, when H becomes significant and exceeds

the threshold value (Hp), the condition tm = TH can no longer be used, since it is not realistic.
In this case, the contribution of the magnetic field to the energy barrier has to be taken into
consideration and as the time for observing the magnetic relaxation process (measurement
time) the time tmH given by equation (26) has to be used. At the same time, according to
equation (26), the measurement time tmH will depend at a given period of the magnetic field
not only on Hp, but also on the amplitude of the external magnetic field Hm.

In addition to the facts described above, it also has to be mentioned that considering tmH

to be the measurement time will lead to important corrections to the value of the magnetic
anisotropy constant or to the volume of the nanoparticles (equation (9)) when these values are
determined experimentally under dynamic conditions imposing the equation τ = tmH when
the external magnetic field exceeds the threshold value, instead of τ = tm = TH, as usual.

5. Conclusions

In the presence of an alternating (harmonic) external magnetic field with a high amplitude,
applied along the direction of the easy magnetization axis of a system of aligned nanoparticles,
the remanence of the system is determined dynamically and it will depend at a given period of
the magnetic field both on the amplitude of the applied magnetic field (Hm) and on the threshold
field (Hp); the remanence of the system of aligned nanoparticles is due to the blocking of the
magnetic moments of the nanoparticles. The field Hp depends on the nature and volume of the
nanoparticles, and on the temperature. Its value will increase as the volume of the nanoparticles
decreases and the temperature increases. When there is a decrease of the external magnetic
field that has oriented all the magnetic moments of the nanoparticles along the direction and
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in the same sense as the applied magnetic field, as long as the amplitude of the magnetic
field is higher than the value of the threshold field (Hm > Hp), the time during which the
magnetic moments can relax is smaller than the period of the alternating field (tmH < TH).
If the amplitude of the external magnetic field decreases to under the value corresponding to
the threshold field (Hm < Hp), the relaxation will occur throughout the whole period of the
alternating magnetic field (tmH = tm = TH), a result in agreement with the one already known.
The measurement time tmH (in the presence of the high alternating field) will depend at a given
frequency on Hp and Hm.

The theoretical analysis carried out for a system of aligned isolated nanoparticles is
confirmed by the experimental results obtained in the case of a ferrofluid-type system made
up of magnetite nanoparticles covered in oleic acid, aligned and fixed in space by freezing in
liquid nitrogen.

These are very important aspects that have to be taken into consideration (when the volume
of the nanoparticle is lower than the critical volume above which the magnetization of the
nanoparticle is stable), having in view that in practical applications of these nanomaterials,
most of the time an external magnetic field is applied.
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